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PREFACE

The discrepancy between existing estimates of the
astronomical unit far exceeds the previously accepted
probable errors. This RAND Memorandum discusses three
aspects of statistical theory, each of which may be
relevant to resolving the discrepancy. It should be of
interest to anyone (astronomer or statistician) who esti-
mates solar system constants. It was supported by the
National Aeronautics and Space Administration under
Contract No. NASr-21 (C4). One of the authors, Allan

Marcus, was a consultant to The RAND Corporation.
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SUMMARY
/55 76

In determining the astronomical unit, (1) any neglect
of the possible correlation of errors may result in an
underestimate of the standard deviation of the a.u.
estimate; (2) an estimate of the parameters of primary
interest with small variance may be based on a least-squares
fit using reasonable assumed values of the additional
parameters as constants, rather than including them in the
fit; and (3) the variance of an a.u. estimate may be
estimated validly from a single observation of a related
phenomenon (e.g., distance from Earth to Venus), provided

that the variance of that particular observation is known.
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STATISTICAL ANALYSIS OF ASTRONOMICAL UNIT ESTIMATES

1. INTRODUCTION

This Memorandum discusses three separate aspects of
statistical theory, each relevant to the problem of how
data on astronomical unit (a.u.) determinations may be
used with statistical efficiency.

The discrepancy between Rabe's estimate [3] of the

a.u. (1.495256 x 10°

km) and the JPL estimate [4] of the
a.u. (1.495988 x 108 km) is over 10 times the cited
probable error of Rabe's estimate and about 300 times the
cited probable error of the JPL estimate. Assuming no
systematic errors in either estimate, the only logical
reconciliation of the two estimates would be, by careful
examination, to discover that the estimated probable errors
are indeed too small. The first section of this Memorandum
indicates a possible source of this underestimate--the
effect of correlation upon the variance of a sample average.
A common example of this is when separate a.u. estimates
are made and then averaged from the data of the same
experiment.

The second section explores the question of whether
or not additional parameters, of which we have good prior
estimates, should be treated as unknowns and, along with
the parameters of direct interest, be estimated via least

squares. Such treatment will unquestionably lead to a

smaller residual sum of squares, but the resulting estimates



of the parameters of primary interest may vary more widely
than would estimates of these parameters that are based on
least squares but use our prior estimates for the values
of the additional parameters.

Note, however, that a systematic error or bias is
introduced when an inexact prior estimate of a parameter
of incidental interest is used in a least-squares analysis.
Thus there may be a trade-off between magnitude of system-
atic error and magnitude of probable error that should
determine which mode of analysis is appropriate in a given
situation. The results of Eckstein [1] may be viewed in
this light. He shows that 25.6% of the discrepancy between
Rabe's and JPL's estimates of the solar parallax (and hence
26.5% of the discrepancy between their a.u. estimates) are
due to their using different values of some incidental
solar system parameters. In addition, the probable error
of the estimate of the solar parallax decreased from Rabe's
000039 to 0%00008. This, then, is an example of a situ-
ation where the introduction of a better value for an
incidental parameter decreases the magnitudes of both the
systematic and probable errors.

The third section shows how to obtain the variance of
an estimate of a parameter based on a single observation.
This technique is then applied to an idealized version of
the JPL experiment. Because the JPL estimate of the a.u.

is an average of several estimates, each of our calculated




variances will differ from the variance of the JPL estimate.
However, the variances tabulated here are combined in the
manner explained in Section 2 (assuming no correlation
between successive estimates) to obtain an order-of-magnitude
indication of the variance of the JPL a.u. estimate which

is consistent with their cited value of the probable error.




2. EFFECT OF CORRELATION ON VARIANCE OF A SAMPLE MEAN

For brevity of nomenclature, we shall extend the use

of the word experiment to include any exercise in which

observations are made on a physical phenomenon. Using this

same word, therefore, we can refer both to Rabe's observations

on the orbit of Eros, a natural phenomenon, and to JPL's

observations on a radar probe of Venus, a man-made phenomenon.
Measurements from such an "experiment" are usually

imprecise, in that the observed value is composed of the

true value, which one hoped to observe, plus errors. These

errors are usually classified as being either systematic

errors, which are due to a definite cause and act according
to a definite law, or random errors, which show no regu-
larities and are indistinguishable from random numbers drawn
from some probability distribution whose mean is zero. We
shall assume that the only errors present in our observations
are random errors. The probability distribution of these
errors is usually the normal distribution with parameter O,
the standard deviation.

Usually, many observations are made of the same phe-
nomenon. If we let € be the true value, we c#n express
the observations as Xl, ey Xn, where Xi = § + Ui and
U, is a random error. Since E[Ui]’ the expected value

of Ui’ is zero for all i, we see that an unbiased

estimate of & is




The standard assumption made about the Ui's is that
they are independent and identically distributed. If so,

the variance of U, V[Ui]’ equals 0® for all i. Then

02

V[‘)_(] = h

If the Ui's are independent but not identically

distributed, so that V[U,] = of, then

vix] = =1
n

Finally, if the Ui's are also correlated, with P s

J
the correlation between Ui and Uj’ then
n n n
2 o? +2 2 2 p.. 0. O,
v =1 1 i=1 j=i+1 1] 1]
vIX] = =2 == .

n

We are being so explicit because if X is used as an
estimate of E, the standard deviation of the estimate is

vV[X] . When the estimate is normally distributed (as is

X in the above cases), the "probable error" @ is defined

as

Pr{X - 1<g<X+7)=73.




Thus 7@ = .674-/VT§T. In this paper, we shall be interested
only in V[X] and its square root, and not in #%. We shall
therefore avoid the mistake of too many experimenters who
loosely use the term "probable error" to mean VQﬂﬁfT ,
rather than 7.

Another confusion occurs when some phenomenon is said
to be "known to within 6." This may state the limits of
the experiment's observational precision, but not the
probable error or the standard deviation of U. The last
two measure the reproducibility of the observed value if
the experiment is repeated, a measurement that of course
depends on, but is not synonymous with, the limits of obser-
vational precision.

The confusion among these three different measures of
error may cause some of the discrepancy in the estimates
of error for the a.u. estimates.

One usually uses the quantity

n
27 x; - %)2
i=1

n(n - 1)

as an estimate of V[X]. The expected value of S is




n
PR EARRICE

2: _ i=
E[s%] = n n{n - 1)
Z)o? + n§2 -nV[X]- ngz
_i=l
n n(n - 1) n n
Eof(l—n—z oan 20 2 p o, O
i= n _ i=l j=i+l J J
n n(n - 1) n n n(n - l)n2
Eo? 22, 2 p,. 0. ©
_ i=1 _ i=1l j=i+l J J
n2 n2(n - 1)
# viX],
except when pij =0 for all i, j. Thus, only if the

observations are uncorrelated, is the '""'mean-square-deviation
divided by n" an unbiased estimate of the variance of X.
In the simple case when 0? = 02 for all i and

p.. =p for all i, j, then

V[-X—] - n0‘2 + g(n-l)poz

n

2
=-%— {1 + (n-1)p} ,

where p must exceed -1/(n-1). 1In any event, if p > O,
which is true for most physical situations, then
v[X] > ¢2/n. Thus a simple division of 0° (or an estimate

of 02) by n will yield an underestimate of the variance

of X.




In a more complicated, but more realistic case, where
the Xi's are a time sequence of observations, one might
postulate that the correlation between Xi and Xj falls

off as the time between making the observations Xi and

X. increases. One such correlation model is given by
pij = pll-J[. When oi = 02 for all i, then in this
model

2 2 n
%1 = 9~ (1+p) _ 20° p(1-p )
VIXI = - 525 2 (1-p)2

For large n, the second term is negligible. One thus

sees that here, too, when p > 0 a simple division of 02

(or an estimate of 02) by n will yield an underestimate

of the variance of X,. by a factor of (1+p)/(1-p).
From this, we see that by neglecting the possible
correlation of errors we may underestimate the error in the

true value's estimate.




3. EFFECT OF FITTING ADDITIONAL PARAMETERS IN LEAST-

SQUARES ANALYSIS

In the previous section, we discussed experiments in
which only one parameter is to be estimated. In actuality,
though{ the measurable phenomenon § is a function of many
parameters and the experimenter usually attempts to use
his observations on & to estimate all these parameters.
In doing this, he typically employs some variant of least-
squares analysis, and finds the set of parameters that
minimizes some (perhaps weighted) residunl sum of squares.
Certainly this is the best set of estimates of the parameters
that characterize the €£€'s. It does not follow, however,
that any particular estimate in this set is the best esti-
mate (the one with minimum variance) of its corresponding
parameter.

It may be better, by using these independent estimates
of some of the set's parameters, to find least-squares
estimates of the remaining parameters of interest. This
should give a larger residual sum of squares but a smaller
variance of a given parameter's estimate.

To illustrate our contention, consider the following

simple example. Let

E = B1ny + YNy ,

where g, nl, and nz are measurable phenomena and §
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and Yy are unknown parameters. Suppose we observe n

independent triples (X;, 7y;, n21), ceey (xn, Mn’ Moy

where Xi = &, + Ui and the 7's are observed without

i
error. We assume that the Ui's are independent and
identically distributed with mean zero and variance 02.
Both B and Yy are parameters characterizing €. But
supposing the parameter of particular interest to be J,
we shall contrast two estimation procedures--one which

assumes a value of Yy and estimates only f, and another

which estimates both S and Y.

Define
n
Sy = U x2
. i
i=1
n
S¢: = ZJX. .. , and
XJj j=1 ¥ J1
n
S:E'r’.n
jk j=1 J1 ki

for j, k =1, 2. Now suppose we assume that the value of
Yy 1is some constant Yo: 2 universally accepted value, say.

Then the least-squares estimator of B is

S - v_ S
A 1 12
By ) =X 0

(o) S11

This estimator has expected value

A S
EB(yy) =B+ (v - Yo>—§1—§,
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so that its bias is (y - yo) 812/811 .

An unbiased estimate of 02 is

(8.S..- S2.)

2
32 _ (5yS197 Sx1) - 2vo (834859 - S195y1) + V(8955
(ry) =

(n - l)Sll

and the variance of 5(yo) is estimated by

A A~ ‘2
Mharg)]= T o)
11
Let us contrast this with the case in which both f8
and 7 are estimated from the same experiment via least
squares. In this case the least-squares estimators of B

and VY are

5 S¢1 S22 ~ Sxa 512
- 5 ,
S11 Son — 813
5 - Sx2 511 ~ Sx1 512
- ’
S.. S.. - 8§

11 722 12

which are both unbiased. An unbiased estimate of 02 is

A9 A9 A A A A
L2 Sygx * BUSyy + Y7855 + 2PYS 5 - 2BSy; - 2vSy,

o = (o - 2) ’”

and the variance of 3 is estimated by

~2
o 822
S S¢

vig]= =
22 12

811
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We illustrate the difference between 9[3(76)] and
V[B] by the following table, based on data taken from
Example 20.1 of Reference [3]. In this example, 9 = .662249,
Since both %[é(?o)] and the absolute value of the bias
of é(?o) are symmetric functions of €, we tabulate them
only for € > 0, and, instead of studying the effect of
varying Yo on G[é(?o)], we shall for convenience express
Y, as ¥ = .662249 + € and tabulate G[é(?o)] as a

A
function of €. We also tabulate the bias of ,B(YO) on

the assumption that ¥ = .662249.

. A A[ A
¢ Bias of B(7) vig(r )]
.008 .0048 .01166
.018 .0109 .01180
.028 .0169 .01205
.038 .0230 .01241
.048 .0290 .01288
.058 .0351 .01347
Since
n

min min Z)(Xi - ﬁnli - YUZi)z

Yy B i=l

n
A A P)

and since
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n
. . 2
mgn iZi Xj = BNy = Yolay)

A 2
(Xl - 3(70)7711 - 701721) s

n

i=1

we see that B(y) = B. We find for this example that

G[ﬁ] = 9[3(75)] = .01338. Comparing this with the tabulated
values, we see that if we do not estimate 7 from the data
but in fact use an accepted value 70 of ¥ within

+ .055 of &, then our estimate é(?o) has a smaller
variance than that based on multiple regression. f course,
part of this is a reflection of the fact that in computing
V[é] we treat our concomitant estimate of Y7, &, as a
random variable, whereas in computing V[é(?o)] we treat

our estimate of 7, VY as a constant.

O’

The independent estimate 70 of Y may be a random
variable, an estimate of 7Y based on an independent random

sample, with mean 7Y and variance 72. In that case,

o? )

A s
Vil = 5= 12,2

+ Tzcg—-
11

2 _ .
In our example, (812/811) = 18.67; so for

2
o (70)
.01338 - '~S——-
2 11 2
™ < 18.67 =Ty o

A

A
B(yo) js a better estimate of B than is f. For the
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above values of €, the following are upper bounds on 7,

the standard deviation of 70.

€ Tu
.008 .0096
.018 .0092
.028 .0084
.038 .0072

.048 .0052
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4. ESTIMATES BASED ON INVERSES OF PHYSICAL RELATIONSHIPS

All unreplicated experiments for determining only the
a.u., :ﬂa, can be described in the following way. The
true value, g, is related to ﬁa by the known physical
relation € = f(a$); the observed value X is the sum of
€ and U, where U is a random observational error un-
correlated with € whose expected value is zero. One
then estimates g by ?a.e =gt (X). Since X is a random
variable whose variance equals 02, the variance of U,
the estimate 56 is also a random variable, whose variance
we shall now approximate.

1

If we expand f (X) in Taylor series around £ = f(ﬁa)

and retain first-order terms, we obtain

-1
o -1 df ~(X)
X =¢8
= a,. + L
(4)] f'laes ’

where f‘(ae) is the derivative of f evaluated at Y

the true a.u. Then
2

via. ] g

@ = [f'(ae))]2

Notice that, based on this expansion, we have

E[§$] ~ 8g. If we look closely at the inversion, though, by
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examining the second-order terms, we find that

f" (a )
N U D 2
a. . a + 3 - 25 o,
® 2>) f ae 284f (%9)
so that
" (a,) 9
Ela.] ~ a - @
@ ® 2[ £ (a(B)]3
= ag + b(%$) ,

where f"(ae) is the second derivative of f evaluated
at ag . Thus using f—l(X) as ﬁe) yields a biased
estimate of gy and this bias, b(aey, can be evaluated.

Keeping this in mind, let us look at the JPL estimates
of ae based on data derived from radar signals reflected
from Venus. Possible measurable phenomena, at any point
in time, are range and radial velocity.

The physical relation, f, between £ and the a.u.,
aa, is simplest to express if we assume that the orbits
of Earth and Venus are concentric, circular, and coplanar.
Since these orbits have low eccentricities and inclinations,
the approximation is reasonable over the relatively brief
period of observation of the JPL experiment.

Let us measure time from the Earth-Venus conjunction

(so that t = 0 at conjunction). We define a as the

semi-major axis of the orbit of Venus, and T and T

®
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as the orbital periods of Earth and of Venus. We assume

that the quantity 6 = QB/TQ is known precisely, as is

k = 2H¢GMO (or equivalently, Gauss's constant). Then,

since a2 = 6-2/3 g, the aforementioned measurable phe-
nomena are functions only of a®. The three we shall be
concerned with are:
(1) range: a {[cos(kt/a3/2) - 6-2/3 cos(ékt/aa/z)]2
D @ ®
1/2
+ [sin(kt/ﬁg/z) -0 2/3 sin(ékt/%;/z)]z} = fl(%a);

(2) radial velocity: {ko’2"3(6—1)a€19/2 sin[ (6—1)kt/aé’/2]}/f1(a@)

= f, (ae);

(3) radial acceleration: -fg(aGQ/Tl(aGQ + {k262/3(5-1)2

-3/2 _
cos[ (6-1)kt 2% ]}/a@ £, (ae) = g (ae).

We suppress for the moment the dependence of fl and f2

on t, because we are only concerned here with the variance

of a single determination of %3.
We see that

t](ag) = [£;(ag) - 3t £,(a))/ag
' _ _ _ 2
£y(ag) = [fz(%a) 3t £3(agy) - 3t fz(ag)/fl(ae)]/2a‘a .
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Let X1 be the observed range of Venus at time t, with
U1 its associated random error. Let X2 be the observed

radial velocity of Venus at time t, with U its as-

2
sociated random error. Let al = f—l(x ) 22 = ¢ (X,)
* ® 1 17> ® 2 277
2

o] = V[Ul], and 0y = V[Uz]. Then

Viag] » 03/1£] ()]
via2] . o2/025 ()12
o = %2/lt2(%g

Reference [6] gives scant indication as to the value

of oy and 0o - Its only statement relating to oy is

the following: "The accuracy of the time-of-flight measure-
ment is about 1 millisec in a typical round trip flight time
of 3 x 105 millisec."” Let us interpret this as saying that
0, = (1/3)10_5§1, where §; 1is the true range at a par-
ticular time.

In the same reference, the only statement relating to
oy is that the "™accuracy of the velocity measurement is
about one part in 105." We interpret this as saying that
02 = 10_5 52’ where §2 is the maximum true doppler shift
of the experiment. So interpreted, this statement is
misleading, as it suggest that errors in velocity measurement
are small, when, in fact, the absolute magnitude of o, is

quite great for large doppler shifts.

Reference [4] states that the doppler-frequency counters
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had a resolution of 1 cycle per second. We have also
learned [2] that the estimated standard deviation of the

R(t)'s is 0.14 m/sec. Since

R(t) _ Af(t)
2¢c £, !

where Af(t) is the doppler frequency shift at time t and

fo = 2388 megacycles, we see that

i
lo
L]
o
-
A4

VIat () ]

= .56 cycles,

which is consistent with the resolution information. We
therefore use 1.4 x 10~ 2 km/sec as 0, -

Table 1 gives values of VV[ﬁé] and of VV['é;] ,
as calculated from the above approximations, for various
values of t (t = O being the time of conjunction, roughly

April 10.4, 1961).



Table 1
Al ’ A2

t (days) Date v[ﬁ$] km v[%e] km
-11.4 March 30 600 6300
~-5.4 April 5 525 12500
~-1.4 April 9 500 48000
1.6 April 12 500 40000
5.6 April 16 525 12500
11.6 April 22 600 6300
21.6 May 2 1425 4000

. Al . -6 .
The bias of ae is on the order of 10 km, rendering

negligible systematic errors in ﬁé. Without determining

it, we suspect the same for the bias of 5629'
The order of magnitude of \/V[%;] is consistent with

the X100 figure given in Reference [4], for if we disregard
the May 2 observation as being spuriously high due to the
inappropriateness of our assumptions, the standard deviation
of the average of the six a.u. determinations (assuming no
correlation) is 125.

On the other hand, the standard deviations of the
doppler-frequency estimates as given in Table 1 are much
larger than those consistent with a 500-km standard deviation
of an average. However, since the JPL estimates and standard
deviations are based on the eastern and western elongation

of Venus, rather than on conjunction data, the cited 500-km
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(and possibly even the 200-km) standard deviation can be

the result of basing the a.u. estimate on enough uncorrelated

a.u. determinations with standard deviations of 6000 km or

less.
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